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11.1 Introduction

Up to this point, this report has discussed the design of a muon collider with:

1. beam energies of 2 + 2 TeV

2. operating at its maximum energy

3. with a fixed rms energy spread of 0.12%
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4. with no attention to maximizing polarization

In this section we discuss modifications to enhance the muon polarization’s, operating

parameters with very small momentum spreads, operations at energies other than the max-

imum for which a machine is designed, and designs of machines for different maximum

energies. In particular we will give parameters of machines with center of mass energy of 0.5

TeV.

11.2 Polarization

11.2.1 Polarized Muon Production

The specifications and components in the baseline design have not been optimized for polar-

ization. Nevertheless, simple manipulations of parameters and the addition of momentum

selection after phase rotation does generate significant polarization with relatively modest

loss of luminosity. The only other changes required to give polarization at the interaction

point are rotators in the transfer lines, and a solenoid in the collider opposite the IP.

Figure 11.1: Muon polarization in the lab system vs the cosine of the center-of-mass decay

angle, for a number of pion energies.
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In the center of mass of a decaying pion, the outgoing muon is fully polarized (-1 for µ+

and +1 for µ−). In the lab system the polarization depends[1] on the decay angle θd and

initial pion energy Eπ. Fig. 11.1 shows this polarization as a function of the cosine of the

center of mass decay angle, for a number of pion energies. It is seen that for pion kinetic

energy larger than the pion mass, the dependence on pion energy becomes negligible. The

polarization is given by P = cosω where the Wigner angle ω satisfy the relations

sinω = sin θcm
plab
π

plab
µ

mµ

mπ

(11.1)

cosω =
{
Elab
π pcm

µ + cos θcmE
cm
µ plab

π

}
/plab

π mπ (11.2)

with plab
π , Elab

π the pion momentum and energy in the laboratory frame and plab
µ , Ecm

µ the

muon momentum in the laboratory frame and energy in the center of mass. A Monte

Carlo calculation[2] of the capture, decay and phase rotation gave muon polarization of

approximately 0.22.

If higher polarization is required, some deliberate selection of muons from forward pion

decays (cos θd→ 1) is required. This could be done by selecting pions within a narrow energy

range and then selecting only those muons with energy close to that of the selected pions.

But such a procedure would collect a very small fraction of all possible muons and would

yield a very small luminosity. Instead we wish, as in the unpolarized case, to capture pions

over a wide energy range, allow them to decay, and to use rf to phase rotate the resulting

distribution.

Consider the distributions in velocity vs ct at the end of a decay channel. If the source

bunch of protons is very short and if the pions were generated in the forward direction,

then the pions, if they did not decay, would all be found on a single curved line. Muons

from forward decays would have gained velocity and would lie above that line. Muons from

backward decays would have lost velocity and would fall below the line. A real distribution

will be diluted by the length of the proton bunch, and by differences in forward velocity

due to the finite angles of particles propagating in the solenoid fields. In order to reduce

the latter, it is found desirable to lower the solenoid field in the decay channel from 5 to

3 T. When this is done, and in the absence of phase rotation, one obtains the distribution

shown in Fig. 11.2, where the polarization P> 1
3
, −1

3
< P < 1

3
, and P< −1

3
is marked by the

symbols ‘+’, ‘.’ and ‘-’ respectively. One sees that the +’s are high, and the -’s are low, all

along the distribution.

It is found that phase rotation does not remove this correlation: see Fig. 11.3. Now,

after a time cut to eliminate decays from high energy pions, there is a simple correlation of

polarization with the energy of the muons.



468 CHAPTER 11. OPTIONS

Figure 11.2: Energy vs ct of muons at end of decay channel without phase rotation; muons

with polarization P> 1
3
, −1

3
< P < 1

3
, and P< −1

3
are marked by the symbols ‘+’, ‘.’ and ‘-’

respectively.

If a selection is made on the minimum energy of the muons, then for muons after the

required time cut, net polarization is obtained. The higher the cut on energy, the greater

the polarization, but the less the fraction Floss = NOUT
µ /N IN

µ of muons that are selected.

The cut in time can probably be obtained from the phasing of the rf used to capture the

bunch. Alternatively, it could be provided by a second energy cut applied after a 90 degree

longitudinal phase rotation.

In order to provide the required cut on energy, one needs to generate dispersion that

is significantly larger than the beam size. Collimation from one side can then select the

higher energy muons. After collimation, the remaining dispersion should be removed. The

generation of sufficient dispersion, in the presence of the very large emittance, is non-trivial.

The only practical method appears to be the use of a bent solenoid (as discussed above in

the target section). First the solenoid is bent in one direction to generate the dispersion;

the collimator is introduced; then the solenoid is bend in the other direction to remove the

dispersion. The complete system thus looks like an “S” or “snake”.

Particles with momentum pµ in a magnetic field B have a bending radius of RB , given
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Figure 11.3: Energy vs ct of muons at end of decay channel with phase rotation; muons with

polarization P> 1
3
, −1

3
< P < 1

3
, and P< −1

3
are marked by the symbols ‘+’, ‘.’ and ‘-’

respectively.

by:

RB =
(epµ/mc)

c B
. (11.3)

If the particles are trapped in a solenoid with this field, and the solenoid is bent with a

radius Rbend, where

Rbend >> RB, (11.4)

then those particles, besides their normal helical motion in the solenoid, will drift in a

direction (z) perpendicular to the bend, with a drift angle (θdrift = dz/ds) given by:

θdrift ≈
RB

Rbend
(11.5)

The integrated displacement in z, ie. the dispersion D, is then:

D = θdrift s ≈ φ RB, (11.6)

where φ is the total angle of solenoid bend.
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As an example, we have traced typical particles with momenta of 150 and 300 MeV/c

through a snake with φ = π, B = 1T , and Rbend = 6 m. Fig. 11.4a shows the trajectories

of muons as viewed from the z direction. No significant dispersion is seen. Fig. 11.4b shows

the same trajectories, where the vertical positions z are plotted against s, the distance

along the snake. The two momenta are seen to be dispersed during the right hand turn

and recombined by the left hand turn. Negligible emittance growth is observed during the

bends, but a small growth of emittance is observed at the sudden (and, in this simulation,

unphysical) field gradient changes at the start and end of the bends. Even these emittance

growths are acceptable providing Rbend > 10 RB.

Figure 11.4: Dispersion snake: trajectories in the bending plane as seen from the perpen-

dicular direction z (upper plot); trajectories in the vertical plane, z plotted against length

along the snake s (lower plot).

Fig. 11.5 and Tb. 11.1 give the results of a Monte Carlo study in which dispersion is

introduced, and progressive cuts applied, to the muons at the end of the phase rotation.
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In this calculation, in order to shorten the computation time, the trajectories were not

actually traced through a snake. Instead, the particles were propagated through 20 m of

straight solenoid, followed by the application of dispersion equal to 6 times the momentum

in GeV/c. A snake that would give such dispersion could have the parameters: solenoid

field: 3 T, giving RB = 0.25 m at the average momentum of 230 MeV/c. The diameter of

the snake bends should be greater than 5 m. The bend angle required is 320 degrees, which

would require some variations in bend curvature to avoid the solenoid crossing its self, but

is not impractical.

Tb. 11.1 gives results for two fields in the decay channel solenoids: 5T, the field in the

point design; and 3T , chosen to increase the polarization. It is seen that for weak cuts and

small polarization, it is better to avoid the loss of muons from the lower, 3T, field, but with

stronger cuts the lower field gives greater polarization. In Fig. 11.5, and subsequent plots,

only data from the preferred fields are shown beyond the cross over.

Table 11.1: Production polarization vs collimator position.

B cut Floss Pinit Pfinal Pvec Rv/s Hvec Eave δE

(T) (m) (MeV) (MeV)

5 0.00 1.000 0.23 0.18 0.36 1.45 1.03 130 23

5 1.00 0.960 0.27 0.21 0.41 1.54 1.05 144 23

5 1.12 0.890 0.30 0.24 0.46 1.64 1.06 147 20

5 1.24 0.759 0.36 0.29 0.53 1.80 1.08 151 18

5 1.30 0.614 0.41 0.33 0.60 1.99 1.11 157 17

5 1.40 0.360 0.48 0.39 0.67 2.26 1.15 166 15

5 1.50 0.163 0.56 0.45 0.75 2.64 1.20 177 15

3 0.00 0.801 0.22 0.18 0.34 1.43 1.03 130 22

3 1.06 0.735 0.29 0.23 0.44 1.61 1.05 133 22

3 1.16 0.673 0.35 0.28 0.52 1.77 1.08 137 19

3 1.26 0.568 0.41 0.33 0.59 1.98 1.11 141 17

3 1.32 0.417 0.50 0.40 0.69 2.32 1.16 147 15

3 1.40 0.264 0.59 0.47 0.77 2.78 1.22 151 13

3 1.48 0.126 0.70 0.56 0.86 3.58 1.32 159 13

3 1.56 0.055 0.77 0.62 0.90 4.25 1.38 168 12

It is seen from Tb. 11.1 that the energy cut not only increases the polarization, but also

decreases the energy spread δE of the remaining muons. In Fig. 11.6 the fractional energy

spread δE/E is plotted against the loss factor Floss. The energy spread is reduced almost
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Figure 11.5: Polarization vs Floss of muons accepted; the dashed line shows polarization as

selected before cooling; the solid line gives polarization after cooling.

a factor of two for reasonable collimator positions. This reduction in energy spread would

eliminate the need for the first stage of emittance cooling.

A Monte Carlo study has also been done on the effect of variations of the proton bunch

length σt. In this study, the dispersion was not specifically introduced. Instead, polarization

was generated by imposing an idealized cut on muon energies. The results of this, compared

with using dispersion and a position cut, are qualitatively the same. Figure 11.7a shows the

polarization before cooling as a function of σt for three values of the loss factor Floss. It is

seen that serious loss of polarization occurs when the rms width is more than 1 ns. Figure

11.7b shows the muon rms energy spread after the polarization cut. Again it is shown as a

function of σt for three values of the loss factor Floss. With no cut, the rise in energy spread

would be serious (δE > 20 MeV is difficult to cool) for an rms width more than 1 ns. But

with polarization cuts, the energy spread is so reduced that a larger proton bunch length

would not be a problem.
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Figure 11.6: The fractional energy spread ∆E/E is plotted against the loss factor Floss for

different magnetic fields.

11.2.2 Polarization Preservation

A recent paper[3] has discussed the preservation of muon polarization in some detail. During

the ionization cooling process the muons lose energy in the material and have a spin flip

probability P , where

P ≈
∫
me

mµ

β2
v

dE

E
(11.7)

where βv is the muon velocity divided by c, and dE/E is the fractional loss of energy due

to ionization loss. In our case the integrated energy loss is approximately 3 GeV and the

typical energy is 150 MeV, so the integrated spin flip probability is close to 10%. The change

in polarization dP/P is twice the spin flip probability, so the reduction in polarization is

approximately 20 %. This dilution is included in the Pfinal column in Tb.11.1 and is plotted

as the line in Fig. 11.5.

During circulation in any ring, the muon spins, if initially longitudinal, will precess by

γ(g− 2)/2 turns per revolution in the ring; where (g− 2)/2 is 1.166 10−3. An energy spread

δγ/γ will introduce variations in these precession and cause dilution of the polarization. But

if the particles remain in the ring for an exact integer number of synchrotron oscillations,
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Figure 11.7: Polarization vs σt, the proton bunch length (upper plot). Muon rms energy

spread vs σt (lower plot). Both plots for three values of the loss factor Floss.

then their individual average γ’s will be the same and no dilution will occur. It appears

reasonable to use this synchrotron spin matching[3] to avoid dilution during acceleration. In

the collider, however, the synchrotron frequency will be too slow to use synchrotron spin

matching, so one of two methods must be used:

• Bending can be performed with the spin orientation in the vertical direction, and the

spin rotated into the longitudinal direction only for the interaction region. The design

of such spin rotators appears relatively straightforward. The example given in the

above reference would only add 120 m of additional arc length, but no design has yet

been incorporated into the lattice.

• The alternative is to install a 120 m 10 T solenoid (Siberian snake) at a location exactly

opposite to the intersection point. Such a solenoid reverses the sign of the horizontal
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polarization and generates a cancellation of the precession in the two halves of the ring.

Provision must also be made to allow changes in the relative spins of the two opposing

bunches. This could be done, prior to acceleration, by switching one of the two beams into

one or the other of two alternative injection lines.

11.2.3 Benefits of Polarization of Both Beams

We consider two examples of the general advantage of having polarization in both beams.

Individual physics experiments would have to be considered to determine how important

such advantages are.

Consider the polarization of a vector spin state generated by the annihilation of the two

muons.

Pvec =
F++ − F−−

F++ + F−−
(11.8)

When only one beam has polarization P1, then Pvec = P1. But if both beams have polariza-

tion P in the same direction (ie. with opposite helicities), then

Pvec =
(P + 1)2 − (P − 1)2

P + 1)2 + (P − 1)2
(11.9)

In Fig. 11.8 both the polarization of each beam P , and the resulting polarization of a vector

state Pvec are plotted against the loss factor Floss.

A second advantage is that the ratio Rvec/sc of vector to scalar cross section can be

manipulated to enhance either the vector or the scalar state. If the polarization directions

have been chosen to enhance the ratio of vector to scalar states, then:

Rv/s =
1 + P

1− P
. (11.10)

Tb. 11.1 and Fig. 11.9 show this ratio as a function of the loss factor Floss.

Tb. 11.1 also shows that the fraction of total luminosity in a given state can be enhanced.

If polarizations are chosen to enhance the vector state, then the fraction of vector luminosity

is increased from 1/2 to (1 + P )/2, ie. the enhancement factor Hvec = (1 + P ), but this is

seen to be only a modest effect.

11.2.4 Luminosity Loss

If nothing else is done, then the luminosity will drop as F 2
loss; where Floss is the fraction muons

lost by the muon momentum cut. At the same time, however, the space charge, wakefield,

and loading during the cooling and acceleration will all be reduced; as will the beam beam
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Figure 11.8: Polarization of each beam P , and the resulting polarization of a vector state

Pvec vs. the loss factor Floss.

tune shift in the collider. Clearly, the cooling could now be reoptimized and some part of

the lost luminosity recovered.

An alternative way to recover the luminosity would be to increase the proton bunch

intensity by the factor Floss. If this were done, then the original number of muons per bunch

would be generated; all the wake field, loading and space charge effects would be the same;

and the luminosity per bunch crossing would be the same. If we assume that the total proton

current is determined by the driver, then such an increase in proton intensity per bunch will

necessitate a reduction in the number of bunches or repetition rate, by the same factor Floss.

The luminosity will then fall by this factor, without the square.

For instance, in the unpolarized case of the 4 TeV collider, there were two bunches of

each sign. If the momentum cut is chosen to give a value of Floss = 1/2, and the proton

beam is distributed into 2 instead of 4 initial bunches, then the final number of muons per

bunch, the loading, beam beam tune shift etc, would all be the same as in the unpolarized

case. The luminosity would be down by a factor of only two, for polarization of 34 % in both

beams.

For higher polarization at good luminosity it would be desirable to have a proton source
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Figure 11.9: The ratio of vector to scalar states, Rv/s vs the loss factor Floss

with the option of a lower repetition rate, but even larger numbers of protons per spill. For

example 4×1014 protons per pulse at 4 Hz. It should then be possible to extend this method

to an operation with Floss = 1/8, and polarization of both beams of 57 %.

One also notes that the luminosity could be maintained at the full unpolarized value if

the proton source intensity could be increased. Such an increase in proton source intensity

in the unpolarized case would be impractical because of the resultant excessive high energy

muon beam power, but this restriction does not apply if the increase is used to offset losses

in generating polarization. If, for instance, the driver repetition rate were increased from 15

to 30 Hz, the fractions Floss set at 0.5, and the number of bunches reduced to one, then the

full luminosity of 1035 (cm−2s−1) would be maintained with polarization of both beams of

34 %.

11.2.5 The Case for Polarized µ+µ− Colliders

Higgs Physics

The most interesting question in particle physics now is associated with the origin of mass.

It is generally assumed that the exchange of fundamental scalar particles, called the “scalar
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sector” is somehow responsible for this. For super-symmetry modes, this scalar sector is

even more complex and interesting (see Tb.11.2)[4]-[6].

In this section, we highlight one of the most interesting goals of a µ+µ− collider: the

discovery of a Higgs boson in the mass range beyond that to be covered by LEP I & II (∼

80–90 GeV) and the natural range of the supercolliders.

With a high-mass t quark, precision LEP/SLD data and the theorists’ dreams of a SUSY

world, the scalar (pseudoscalar sector) is possibly very complex and may require several

types of colliders[7]. Consider:

• If the low-mass Higgs has m > 130 GeV, MSSM is not allowed.

• If m > 200 GeV, there are constraints from the requirement that perturbation theory

be useful up to very high energy and from the stability of the vacuum.

• If m < 130 GeV, MSSM is possibly allright, but we may expect other particles (H,A)

and the width of the low mass Higgs may change.

• The scalar sector may be extremely complex, requiring pp (LHC) and µ+µ− colliders

(and possibly NLC and γγ colliders).

• In high energy collisions, vector states are allowed unless a special method is used.

Consider µ+µ− colliders with polarized µ±

Table 11.2: The scalar sector

(100–500) GeV scalars (H,A, ...)

↗

µ+µ−

↘

≥ 2 TeV W+W−

Z0Z0 production in scalars

This cannot be done for pp or e+e− colliders.

• A µ+µ− collider is complimentary to the LHC/CMS detector.

There are several ways to determine the approximate mass of the Higgs boson in the

future[7]. Suppose it is expected to be at a mass of 135 ± 2 GeV, the energy spread of a
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Figure 11.10: Higgs search at a µ+µ− collider (required machine resolution and the expected

Higgs width).

µ+µ− collider can be matched to the expected width (see Fig.11.10). An energy scan could

yield a strong signal to background especially with polarized µ+µ− in the scalar configuration

[5],[7]. Once the Higgs is found, the following could be carried out:

1. Measurement of width, to separate Standard Model Higgs from SUSY or other Higgs

models[5],

2. Measurement of the Branching fractions, the rare decay will involve loop effects that

can sample very high energies.

Polarization will play an essential role for any µ+µ− collider [5],[6]

Production of Polarized µ± Beams

Polarization is natural for µ±, since they are produced in weak decays and are initially fully

polarized because of the V–A interaction. There are three proposed methods for producing

intense polarized µ± beams:

• Accelerate polarization and cool the π± (A. Skrinsky et al.)[8]
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Table 11.3: Depolarization processes in the µ+µ− complex (Norum Rossmanith scheme)

Plan Comments

1. Decay channel (some acceleration also) Use synchrotron spin matching;

Small effect on polarization.

2. Cooling channel (P ∼ P0 e
(−K/a), Depolarization ∼ (me/mµ)β2;

where a ∼ 200 m for Be). For β ∼ 0, the effect is very small.

3. During acceleration to 250 GeV or 2 TeV Cross integer resonances

(CEBAF-type recirculation (3 for 250GeV, 21 for 2 TeV);

does not cause severe depolarization) Two effects cause depolarization during

acceleration: energy spread and resonances.

4. Depolarization in collider Possible large depolarization;

spin rotation will be needed to keep small

• Use K± decays and “narrow-band neutrino-like beam” (D. Cline)

• Use pion decays and a short proton bunch (R. Palmer et al.)[9].

Fig.11.5 shows the tradeoff between intensity and polarization in one of these schemes[9].

This is one of the major areas of research for µ+µ− colliders.

Polarization Preservation in the µ+µ− Collider Complex

R. Rossmanith[3] has presented a scheme to ensure polarization preservation. Because of

the value of the (g − 2)µ for the µ±, it should be much easier to maintain large polarization

provided certain steps are taken in the collider complex[3]. The preferred polarization state

up to the high energy collider will be longitudinal. These steps are outlined here in Tb.11.3

and in Fig.11.11[3]. It is extremely good news that a µ+µ− collider with high polarization

may be feasible, provided the initial problem of achieving high polarization at the source is

solved. This is one of the major problems of a µ+µ− collider.

In Fig.11.11a it is shown a possible scenario for arranging the spin rotators in order to

obtain varying helicity directions from interaction to interaction. After the particles have

passed the two spin rotators surrounding the interaction region, the spin aims in the opposite

direction and changes its direction the next time it passes the interaction region. This means

that polarized interactions with a low systematic error can be obtained. In Fig.11.11b it is
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Figure 11.11: (A) A possible scenario for arranging the spin rotators; (B) Possible spin

rotator for muons in the main ring

shown a possible spin rotator for the main ring. The spins are rotated 45 degrees from

the vertical towards the momentum axis by the first three ca. 10-T, 10-m-long vertically

deflecting magnets. The spin is afterwards rotated by 180 degrees around the vertical axis

by 12 normal bending magnets and finally into the longitudinal direction by the last three

vertically deflecting magnets. The additional space requirement for the spin rotators is 120

m on each side of the interaction region. H and V denote, respectively, horizontally and

vertically deflecting magnets

t Quark Physics

The status of the t quark study from FNAL for the CDF detector was reviewed by D.

Amidei[10]. In Fig.11.12, we show that Feynman diagrams for the production of tt̄ for

both e+e− and µ+µ− collisions[6]. Because of the larger mass of the µ compared to the

e, the diagram with a scalar intermediate state can be important (see process depicted in

Fig.11.12b). If we fully polarize the µ+µ− system to give a net zero scalar state, we believe the

scalar sector will be enhanced to the point that a measurable asymmetry will be generated.

Thus, one could search for evidence of a scalar particles far from the central mass. This is a

unique feature of polarized µ+µ− colliders[6]. The detector design will play a crucial role in

such studies[11],[12].
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Figure 11.12: tt̄ production at µ+µ− colliders.

11.3 Scaling of Luminosity vs Energy and Momentum

Spread

The bunch populations decay exponentially, yielding an integrated luminosity equal to its

initial value multiplied by an effective number of turns neff = 150 B, where B is the mean

bending field in T.

The luminosity is given by:

L =
N2
µ frep neffnbγ

4π β∗ εn
H(A,D) (11.11)

where Nµ is the number of muons in one bunch, nb is the number of bunches and the

enhancement factor H(A,D) is[13]

H(A,D) ≈ 1 +D1/4

[
D3

1 +D3

]{
ln (
√
D + 1) + 2 ln (

0.8

A
)
}
, (11.12)
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with A = σz/β
∗, and D = σznµ

γσ2
t
re(

me
mµ

).

In the cases we are considering: A ≈ 1, D ≈ 0.5 and H(A,D) ≈ 1.

11.3.1 Luminosity vs Energy, for a Given Ring

For a fixed collider lattice, operating at energies lower than the design value, the luminosity

will fall as γ3. One power comes from the γ in Eq.11.11; a second comes from ne, the effective

number of turns, that is proportional to γ; the third factor comes from β∗, which must be

increased proportional to γ in order to keep the beam size constant within the focusing

magnets. The bunch length σz must also be increased proportional to γ so that the required

longitudinal phase space is not decreased; so A = σz/β
∗ remains constant.

11.3.2 Scaling for Collider Rings for Different Energies

As noted above, the luminosity in a given ring will fall as the third power of the energy at

which it is operated. Such a drop is more rapid than the gain in typical cross sections, and,

as we shall see, it is more rapid than the drop in luminosity obtained with rings designed

for the lower energies. It would thus be reasonable, having invested in a muon source and

accelerator, to build a sequence of collider rings at spacings of factors of 2-3 in maximum

energy. We will now derive scaling rules for such collider rings.

The luminosity

L =
N2
µ neffnbfrep γ

4 π εn β∗
∝

Nµ Iµ γ

εn β∗
(11.13)

which, since ∆νbb, the beam beam tune shift is given by:

∆νbb ∝
Nµ

εn
, (11.14)

gives:

L ∝
Iµ ∆νbb γ

β∗
(11.15)

where Iµ = Nµnbfrep is the muon flux.

If a final focus multiplet is scaled keeping the relative component lengths and the pole

tip fields constant, then one obtains:

`∗ ∝
√
amax γ (11.16)

θ∗ ∝

√
amax

γ
∝

√
εn

β∗ γ
(11.17)

β∗ ∝
εn

amax
(11.18)
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where θ∗ is the rms angle of muons diverging from the focus. `∗ is the free space from

the target to the first quadrupole (proportional to all quadrupole lengths in the multiplet),

and amax is the maximum aperture of any quadrupole (proportional to all apertures in the

multiplet).

The normalized emittance εn is constrained by the ionization cooling, but since one

can exchange transverse and longitudinal emittance, it is, in principle, the six dimensional

emittance ε6 that is constrained. Extending the lepton emittance conventions, we define:

ε6 = (εn)2 δσzγβv. (11.19)

where δ = δp
p
. With this definition, the area of the six dimensional phase space is given by,

Φ6 = π3 m3
µ ε6. σz cannot be large compared with the focus parameter β∗, so, taking them

to be proportional to one another, and taking the normalized velocity βv = 1, then:

ε6 ∝ (εn)2 δβ∗γ (11.20)

and from the above:

(εn)3 ∝
ε6 amax

γ dp
p

(11.21)

(β∗)3 ∝
ε6

γ δ a2
max

(11.22)

11.3.3 Six Dimensional Emittance Dependence on Nµ and εn

The six dimensional emittance ε6 obtained from the cooling will, because of more detailed

constraints, depend to some extent on the number of muons nµ, and on the final transverse

emittance εn.

The dependence on the number of muons is relatively straightforward. As the number

of muons per bunch rises, the longitudinal space charge forces increase and it becomes

impossible, without changing the rf systems, to maintain the same bunch lengths. As a

result the bunch lengths must be increased by the square root of the number of muons.

A study, using the analytic formulae, was used to derive cooling sequences with differing

parameters. First, sequences were calculated with numbers of initial muons per bunch of 1,

2, 3.75, 7.5, and 15 x 1012 (corresponding to muons in the collider of .1, .2, 1, 2, and 4 x

1012). The final transverse emittance at the end of the cooling was required to be 4 10−5 m,

(corresponding to an emittance in the collider of 5 10−5 m). The six dimensional emittances

obtained are plotted in Fig. 11.13a. It is seen that for Nµ > 1012 the six dimensional

emittances are indeed approximately proportional to the root of the number of muons (the

line shows this dependence).
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The study also obtained cooling sequences giving six dimensional emittances for a range of

final transverse emittances. The dependence here is more complicated. If emittance exchange

between longitudinal and transverse emittances could be achieved without material then the

six dimensional emittance should be independent of the final transverse emittance chosen.

But the exchange does require material wedges, and Coulomb scattering in those wedges

increases the six dimensional emittances; and it does so to a greater extent if the transverse

emittance is small. In Fig. 11.13b, we show the six dimensional emittances obtained for

5 representative transverse emittances. Over the range of interest the dependence of ε6 is

approximately the inverse root of εn (the line shows this dependence).

For the purposes of this study, we may thus assume that:

ε6 ∝

√
Nµ

εn
(11.23)

11.3.4 Energy Scaling, Allowing the Emittances to Vary

If Nµ is limited by the beam beam tune shift:

Nµ ∝ εn ∆νbb (11.24)

substituting this in equation 11.23:

ε6 ∝
√

∆νbb (11.25)

giving:

εn ∝ ∆ν
1/6
bb

(
amax

γ δ

)1/3

(11.26)

β ∝
εn

amax

(11.27)

nµ ∝ (∆νbb)
1 1

6

(
amax

γ δ

)1/3

(11.28)

(11.29)

so:

L|∆ν ∝ Iµ γ
4/3 ∆ν

5/6
bb a2/3

max (δ)1/3 (11.30)

One notes however that as γ or δ decreases the required number of muons Nµ rises, and

will at some point become unreasonable. If we impose a maximum number of muons Nmax,

then, when this bound is reached,

εn ∝ N1/7
max

(
amax

γ δ

)2/7

(11.31)



486 CHAPTER 11. OPTIONS

Figure 11.13: Six-dimensional emittance ε6 vs a) muon intensity Nµ entering the cooling

section; b) the transverse emittance εn at the end of the cooling section.

β ∝
εn

amax
(11.32)

and:

L|Nµ ∝ Iµ N
12/7
max γ11/7 a3/7

max

(
δp

p

)4/7

(11.33)

Using the above relationships. and assuming a constant value of amax we obtain the

scaled parameters for a sequence of colliding rings given in Tb. 11.4. Fig.11.14 shows the

luminosities that would be available at all energies, including those requiring the use of rings

at energies less than their maximum. The lines and dashed lines indicate the luminosities

with a bound on Nµ of 4 1012. The line gives luminosities for the nominal rms δp/p of 0.12 %,

while the dashed line is for a δp/p of 0.01 %.
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Figure 11.14: Luminosity vs energy assuming rings spaced by factors of two in energy; the

line is for δE/E = 0.12 %, the dashed line is for δE/E = 0.01 %.

Table 11.4: Scaling of parameters with energy and momentum spread

E Luminosity emittance #µ δν β len∗ βmax chrom δE/E

(GeV) (cm−2s−1) (m-rad) (1012) (mm) (m) (km) (%)

4000 2.5E+35 4.0E-05 1.6 0.040 2.4 9.2 882 12829 0.12

2000 1.0E+35 5.0E-05 2.0 0.040 3.0 6.5 350 3600 0.12

1000 4.0E+34 6.3E-05 2.5 0.040 3.8 4.6 139 1010 0.12

500 1.6E+34 7.9E-05 3.2 0.040 4.8 3.3 55 283 0.12

250 6.3E+33 1.0E-04 4.0 0.040 6.0 2.3 22 80 0.12

125 2.1E+33 1.2E-04 4.0 0.033 7.3 1.6 9 23 0.12

4000 1.1E+35 9.1E-05 3.6 0.040 5.5 9.2 385 5604 0.01

2000 4.0E+34 1.1E-04 4.0 0.036 6.7 6.5 156 1603 0.01

1000 1.3E+34 1.4E-04 4.0 0.029 8.2 4.6 64 465 0.01

500 4.5E+33 1.7E-04 4.0 0.024 10.0 3.3 26 135 0.01

250 1.5E+33 2.0E-04 4.0 0.020 12.2 2.3 11 39 0.01

125 5.1E+32 2.5E-04 4.0 0.016 14.9 1.6 4 11 0.01
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